Inverse Kinematics in 2D – Part 1

If you have been following this blog for a while, you might have noticed some recurring themes. Inverse Kinematics is definitely one them, and I have dedicated an entire series on how to apply it to robotic arms and tentacles. If you have not read them, do not fear: this new series will be self-contained, as it reviews the problem of Inverse Kinematics from a new perspective.

You can read the rest of this online course here:

Continue reading

Inverse Kinematics for Tentacles

This post continues our journey in the depth of Inverse Kinematics. In this tutorial you will learn how to apply this powerful technique to create realistic tentacles.

 

The other post in this series can be found here:

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial.

Continue reading

Inverse Kinematics for Robotic Arms

 

After a long journey about the Mathematics of Forward Kinematics and the geometrical details of gradient descent, we are ready to finally show a working implementation for the problem of inverse kinematics. This tutorial will show how it can be applied to a robotic arm, like the one in the image below.

The other post in this series can be found here:

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial. Continue reading

An Introduction to Gradient Descent

This post concludes the theoretical introduction to Inverse Kinematics, providing a programmatical solution based on gradient descent. This article does not aim to be a comprehensive guide on the topic, but a gentle introduction. The next post, Inverse Kinematics for Robotic Arms, will show an actual C# implementation of this algorithm in with Unity.

The other post in this series can be found here:DistanceFromTarget

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial.

Continue reading