Inverse Kinematics in 3D

This tutorial will teach you how to master inverse kinematics in 3D: the technique that solves the problem of moving a robotic arm to reach for a specific target.

You can read the rest of this online course here:

A link to download the entire Unity package can be found at the end of this tutorial.

Continue reading

Improving Floating-Point Precision in C#

This tutorial continues the journey to understand floating-point arithmetic, and how to improve the precision of modern programming language types.

At the end of this article, you will find a link to download a simple C# library that provides a new type which improves the precision of traditional float and double variables.

Continue reading

An Introduction to Floating-Point Arithmetic

This tutorial will introduce you to floating-point arithmetic, and how many modern languages—C# included—represent real numbers. This is a series in two parts:

At the end of this article, you will find a link to download a simple C# library that provides a new type which improves the precision of traditional float and double variables.

Continue reading

From an Outbreak to an Epidemic

This online course introduces the topic of modelling and simulating epidemics. If you are interested in understanding how Mathematicians, Programmers and Data Scientists are studying and fighting the spread of diseases, this series of posts is what you are looking for.

The third, and final part of this course will focus on different strategies that can be used to explore different mechanisms of transmission, and possible interventions.

This online course is inspired by the recent COVID-19 pandemic. Now more than ever we need skilled and passionate people to focus on the complex subject of Epidemiology. I hope these articles will help some of you to get started.

All the revenue made from this article through Patreon will be donated to the National Emergencies Trust (NET) to help those most affected by the recent coronavirus outbreak. If you have recently become a patron for this reason, get in touch and I will add your contribution.

Become a Patron!

Continue reading

Simulating Epidemics

This is the second part of the online course dedicated to the modelling and simulating of epidemics. If you are interested in understanding how Mathematicians, Programmers and Data Scientists are studying and fighting the spread of diseases, this series of posts is what you are looking for.

In the second part, we will focus on ways to simulate epidemics. While the code here presented is in C# and runs in Unity, the knowledge can be applied to virtually any other language or engine.

You can read the rest of this online course here:

This online course is inspired by the recent COVID-19 pandemic. Now more than ever we need skilled and passionate people to focus on the complex subject of Epidemiology. I hope these articles will help some of you to get started.

All the revenue made from this article through Patreon will be donated to the National Emergencies Trust (NET) to help those most affected by the recent coronavirus outbreak. If you have recently become a patron for this reason, get in touch and I will add your contribution.

Become a Patron!

And if you are interested in learning more about the virus responsible for the COVID-19 epidemics, SARS-CoV-2, have a look at the semi-serious video down below.

Continue reading

Inverse Kinematics for Tentacles

This post continues our journey in the depth of Inverse Kinematics. In this tutorial you will learn how to apply this powerful technique to create realistic tentacles.

 

The other post in this series can be found here:

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial.

Continue reading

Inverse Kinematics for Robotic Arms

After a long journey about the Mathematics of Forward Kinematics and the geometrical details of gradient descent, we are ready to finally show a working implementation for the problem of inverse kinematics. This tutorial will show how it can be applied to a robotic arm, like the one in the image below.

The other post in this series can be found here:

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial. Continue reading

Implementing Forward Kinematics

This tutorial continues our quest to solve the problem of forward kinematics. After exploring a mathematical solution in The Mathematics of Forward Kinematics, we will see how to translate it into C# for Unity. The next tutorial, An Introduction to Gradient Descent, will finally show the theoretical foundations to solve inverse kinematics.

The other post in this series can be found here:

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial.

Continue reading

The Mathematics of Forward Kinematics

This tutorial starts our journey into the world of inverse kinematics. There are countless ways to approach this problem, but they all starts with forward kinematics.

Inverse kinematics takes a point in space, and tells you how to move your arm to reach it. Forward kinematics solves the opposite, dual problem. Knowing how you are moving your arm, it tells which point in space it reaches.

The other post in this series can be found here:

At the end of this post you can find a link to download all the assets and scenes necessary to replicate this tutorial.

Continue reading