Inverse Kinematics in 2D – Part 1

If you have been following this blog for a while, you might have noticed some recurring themes. Inverse Kinematics is definitely one them, and I have dedicated an entire series on how to apply it to robotic arms and tentacles. If you have not read them, do not fear: this new series will be self-contained, as it reviews the problem of Inverse Kinematics from a new perspective.

You can read the rest of this online course here:

A follow-up that focuses on 3D is also available:

Continue reading

CD-ROM Shader: Diffraction Grating – Part 2

This post completes the series on how to create a shader for CD-ROMs.

You can find the complete series here:

A link to download the Unity project used in this series is also provided at the end of the page.

Continue reading

CD-ROM Shader: Diffraction Grating – Part 1

This post will guide you through the creation of a shader that reproduces the rainbow reflections that can be seen on CD-ROMs and DVDs. This tutorial is part of a longer series on physically based iridescence.

You can find the complete series here:

A link to download the Unity project used in this series is also provided at the end of the page.

Continue reading

Fast Subsurface Scattering in Unity (Part 1)

Most (if not all) optical phenomena that materials exhibit can be replicated by simulating how the individual rays of light propagate and interact. This approach is referred in the scientific literature as ray tracing, and it is often too computationally expensive for any real-time application. Most modern engines rely on massive simplifications that, despite being unable to reproduce photorealism, can produce a believable approximation. This tutorial introduces a fast, cheap and convincing solution that can be used to simulate translucent materials which exhibit subsurface scattering.

This is a two part series:

At the end of this post, you will find a link to download the Unity project.

Continue reading

The Mathematics of Diffraction Grating

This post introduces the mathematics behind the optical phenomenon known as diffraction grating, which is responsible for iridescent reflections in many materials.

You can find the complete series here:

A link to download the Unity project used in this series is also provided at the end of the page.

Continue reading

Understanding Diffraction Grating

The first post in this series, The Nature of Light, introduced the dual nature of light, exhibiting behaviours which are typical of both waves and particles. In this part, we will see how those two aspects are both necessary for iridescence to arise.

You can find the complete series here:

A link to download the Unity project used in this series is also provided at the end of the page.

Continue reading

Improving the Rainbow – Part 2

In the previous part of this tutorial, Improving the Rainbow – Part 1, we have seen different techniques to reproduce the colours of the rainbow procedurally. Solving this problem efficiently will allow us to simulate physically based reflections with a much higher fidelity.

The purpose of this post is to introduce a novel approach that yields better results than any of the previous solutions, without using any branching.

You can find the complete series here:

A link to download the Unity project used in this series is also provided at the end of the page.

Continue reading

Improving the Rainbow – Part 1

Our journey to photorealism requires us to understand not only how light works, but also how we perceive colours. How many colours are in the rainbow? And why pink is not one of them? Those are some of the questions that this post will address.

You can find the complete series here:

A link to download the Unity project used in this series is also provided at the end of the page.

Continue reading